Abstract

We describe experimental and theoretical studies dedicated to establishing the physics of formation of double droplets in microfluidic systems. We show that the morphologies (complete engulfing, partial engulfing, and nonengulfing) obtained at late times minimize the interfacial energy of the system. We explain that nonequilibrium morphologies generated in the system can have long lifetimes. Remarkably, the physics of formation of the double droplets with microfluidics allows the synthesis of particles with new morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.