Abstract
We present a unified framework for equilibrium and nonequilibrium many-body perturbation theory. The most general nonequilibrium many-body theory valid for general initial states is based on a time-contour originally introduced by Konstantinov and Perel'. The various other well-known formalisms of Keldysh, Matsubara and the zero-temperature formalism are then derived as special cases that arise under different assumptions. We further present a single simple proof of Wick's theorem that is at the same time valid in all these flavors of many-body theory. It arises simply as a solution of the equations of the Martin-Schwinger hierarchy for the noninteracting many-particle Green's function with appropriate boundary conditions. We further discuss a generalized Wick theorem for general initial states on the Keldysh contour and derive how the formalisms based on the Keldysh and Konstantinov-Perel'-contours are related for the case of general initial states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.