Abstract

Systematic studies on metal ion adsorption equilibrium and kinetics by a commercial H-type granular activated carbon were carried out. Titration of the carbon showed that the surface charge density decreased with an increasing pH. Higher copper adsorption was obtained with increasing solution pH and ionic strength. Metal removal was in the descending order: Cu 2+>Zn 2+≈ Co 2+. Copper removal was not affected by addition of zinc or cobalt, while copper can reduce both zinc and cobalt removal. Kinetic experiments demonstrated that the copper adsorption rapidly occurred in the first 30–60 min and reached the complete removal in 3–5 h. Removal of zinc and cobalt was slightly slower than that of copper. It was found that the mass transfer is important in the metal adsorption rate. The surface complex formation model was used successfully to describe the surface change density, as well as the single- and multi-species metal adsorption equilibrium. The copper removal was due to adsorption of Cu 2+, CuOH +, and CuCl +, while the zinc and cobalt uptake was due to the formation of surface–metal complexes of SOM 2+ and SOMOH + (M=Zn and Co). It was found that the diffusion-control model well described the adsorption kinetics with various metal ions and pH values. Finally sensitivity analysis on the kinetic model's parameters was carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call