Abstract

Ion exchange has a great potential to remove heavy metals from industrial wastewaters or heavy metal-containing sludge. In order to design and operate heavy metal removal processes, the equilibrium relationship between ions and resin must be known a prior. A series of ion-exchange equilibrium tests of Cu 2+/H +, Zn 2+/H +, and Cd 2+/H + systems using Amberlite IR-120 were performed. The equilibrium data were analyzed by the Langmuir isotherm, Freundlich isotherm, and selectivity coefficient approaches. The thermodynamic parameters such as Gibbs free energy change, enthalpy change, and entropy change were calculated. By comparison of the selectivity coefficients, the affinity sequence to IR-120 is Cu 2+ > Zn 2+ > Cd 2+ > H +. Moreover, in order to understand the heavy metal extraction kinetics in the presence of Amberlite IR-120, the ion-exchange kinetics was also studied. The ion-exchange kinetic data were regressed by the pseudo first-order, second-order models, and a reversible reaction model. The activation energies calculated from the rate coefficients at different temperatures are 15.41, 7.04, and 17.01 kJ/mol for copper, zinc, and cadmium, respectively. Although the pseudo first- and second-order models are easier to use for data analysis, the resultant model parameters depend on operating conditions. The reversible reaction model is capable to predict the effects of resin to solution ratio, initial heavy metal concentration, and temperature on the ion-exchange kinetic curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.