Abstract

NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p Ka values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call