Abstract

Batch adsorption of reactive blue H3R (B), red 3BF (R), and yellow FG (Y) dyes onto activated carbon (AC) and barley husk (BH) was studied. Various experiments were carried out to find the effect of initial dye concentration (5–100 mg/l), adsorbent dosage (0.1–1 g), contact time (15–420 min), pH solution (2.5–8.5), and temperature 30°C. The experimental data showed that the increasing uptake at decreasing pH with respect to (AC) was with B and R dyes while in comparison with (BH) was showed increased uptake at pH increasing for all dyes. Adsorption capacity increased with increasing initial concentration of all dyes with (AC) and (BH). The experimental data were analyzed using Langmuir, Freundlich, and Sips isotherm models. The adsorption of B, R, and Y dyes with (AC) was well fitted with all above models with R2 (0.925–1), while adsorption onto (BH) for B dye showed R2 (0.87–0.96) for above models, while for other dyes showed low R2 values. Pseudo-first-order, pseudo-second-order kinetic, and intraparticle diffusion models were used to analyze the kinetic data. The data were well fitted at dye concentration 10 ppm with the pseudo-first order when R2 values for B, R, and Y dyes were (0.88, 0.97, and 0.982) and (0.98, 0.947, and 943) for (AC) and (BH), respectively, while intraparticle models with R2 values were (0.97, 0.9, and 0.818) and (0.932, 0.8, and 0.947) for each of (AC) and (BH), respectively. Pseudo-second-order model showed well fitting for (AC), when R2 values were (0.77, 0.965, and 0.998) for B, R, and Y dyes, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.