Abstract

The equilibrium and kinetics of chromium (VI) adsorption on a new synthesized resin containing both N-methyl-d-glucamine and quaternary ammonium functional groups P(VbNMDG-co-ClVBTA) have been presented. The results obtained for the new copolymer were compared with those for two commercial resins, namely Amberlite IRA-743 and IRA-400, containing only N-methyl-d-glucamine and quaternary ammonium functional groups, respectively. The effect of adsorbent dose, pH, temperature, and interfering ions on chromium removal was studied. The maximum chromium uptake for the copolymer was 677.9mggresin−1 at pH 4-5, while those for IRA-400 and IRA-743 were 893.4 and 316.6mggresin−1, respectively. Chloride and sulfate anions did not exhibit an effect on chromium sorption for the copolymer and IRA-400; however, sorption on the IRA-743 resin was affected. The adsorption kinetics and isotherms as well as thermodynamic parameters were evaluated. Increasing temperature decreased the chromium adsorption for both commercial and synthesized resins, revealing the exothermic nature of the process. The Freundlich and Langmuir isotherm models were used to describe the adsorption of Cr(VI) onto resins. Kinetic studies revealed that Cr(VI) reached over 99% removal at 10, 30, and 240min for the copolymer, IRA-400, and IRA-743, respectively. Chromium adsorption/desorption cycles were performed to estimate the adsorbent lifetime, where the copolymer resin exhibited a better performance than IRA-400, and IRA-743, achieving a high efficiency after 3 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.