Abstract

The properties of equilibria and phase synchronization involving burst synchronization and spike synchronization of two electrically coupled HR neurons are studied in this paper. The findings reveal that in the non-delayed system the existence of equilibria can be turned into intersection of two odd functions, and two types of equilibria with symmetry and non-symmetry can be found. With the stability and bifurcation analysis, the bifurcations of equilibria are investigated. For the delayed system, the equilibria remain unchanged. However, the Hopf bifurcation point is drastically affected by time delay. For the phase synchronization, we focus on the synchronization transition from burst synchronization to spike synchronization in the non-delayed system and the effect of coupling strength and time delay on spike synchronization in delayed system. In addition, corresponding firing rhythms and spike synchronized regions are obtained in the two parameters plane. The results allow us to better understand the properties of equilibria, multi-time-scale properties of synchronization and temporal encoding scheme in neuronal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.