Abstract
In this paper we present two formulations of an equilibrium notion for large games in which each player cannot observe precisely the moves of the other players in the game. In the context of large anonymous games where the moves of the other players are summarized by a probability measure on the action space, imperfect observability is formulated as a map from the space of such measures to the space of probability measures on this space. In the context of large non-anonymous games where the moves of the other players are summarized by a measurable function from the space of players to the action space, imperfect observability is formulated as a conditional expectation of such a function with respect to a σ-subalgebra of the measure space of players. We report results both on the existence and upper hemicontinuity of equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.