Abstract

Sequential allocation is a simple mechanism for sharing multiple indivisible items. We study strategic behavior in sequential allocation. In particular, we consider Nash dynamics, as well as the computation and Pareto optimality of pure equilibria, and Stackelberg strategies. We first demonstrate that, even for two agents, better responses can cycle. We then present a linear-time algorithm that returns a profile (which we call the “bluff profile”) that is in pure Nash equilibrium. Interestingly, the outcome of the bluff profile is the same as that of the truthful profile and the profile is in pure Nash equilibrium for all cardinal utilities consistent with the ordinal preferences. We show that the outcome of the bluff profile is Pareto optimal with respect to pairwise comparisons. In contrast, we show that an assignment may not be Pareto optimal with respect to pairwise comparisons even if it is a result of a preference profile that is in pure Nash equilibrium for all utilities consistent with ordinal preferences. Finally, we present a dynamic program to compute an optimal Stackelberg strategy for two agents, where the second agent has a constant number of distinct values for the items.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.