Abstract

We study the equilibrium and kinetic properties of a model for polydisperse mixture adsorption. The system consists of a bulk phase of hard disks with a given size distribution and overall concentration that adsorb and desorb on a continuous planar surface. The disks adsorb at a rate proportional to their bulk concentration and desorb at a rate that may depend on the particle size. The model is characterized by α, the dimensionless binding energy of a solute per unit area, and K which is proportional to the total bulk concentration. The properties of the model are determined with scaled particle theory (SPT) and with numerical simulation. If the desorption rate is independent of particle size, an equilibrium is rapidly established between the bulk and adsorbed phases. The resulting adsorption isotherms predicted by SPT agree well with the numerical simulations. If the desorption rate depends exponentially on the binding energy of the adsorbed particle, the approach to equilibrium is dramatically slowed. At high bulk concentrations and low values of α the adsorbed density increases monotonically with time, while the coverage displays an overshoot. At low K and high α, it is the coverage that increases monotonically, while the density passes through a maximim. For a given bulk phase distribution, one can construct an (α,K) kinetic phase diagram delineating this behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.