Abstract

It has been proposed to investigate the equilibration properties of a small isolated quantum system by means of the matrix of asymptotic transition probabilities in some preferential basis. The trace T of this matrix measures the degree of equilibration of the system prepared in a typical state of the preferential basis. This quantity may vary between unity (ideal equilibration) and the dimension N of the Hilbert space (no equilibration at all). Here we analyze several examples of simple systems where the behavior of T can be investigated by analytical means. We first study the statistics of T when the Hamiltonian governing the dynamics is random and drawn from a distribution invariant under the group U or O. We then investigate a quantum spin S in a tilted magnetic field making an arbitrary angle with the preferred quantization axis, as well as a tight-binding particle on a finite electrified chain. The last two cases provide examples of the interesting situation where varying a system parameter—such as the tilt angle or the electric field—through some scaling regime induces a continuous crossover from good to bad equilibration properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.