Abstract

Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides using a diferric tyrosyl radical (Y(122)(•)) cofactor in β2 to initiate catalysis in α2. Each turnover requires reversible long-range proton-coupled electron transfer (PCET) over 35 Å between the two subunits by a specific pathway (Y(122)(•) ⇆ [W(48)?] ⇆ Y(356) within β to Y(731) ⇆ Y(730) ⇆ C(439) within α). Previously, we reported that a β2 mutant with 3-nitrotyrosyl radical (NO(2)Y(•); 1.2 radicals/β2) in place of Y(122)(•) in the presence of α2, CDP, and ATP catalyzes formation of 0.6 equiv of dCDP and accumulates 0.6 equiv of a new Y(•) proposed to be located on Y(356) in β2. We now report three independent methods that establish that Y(356) is the predominant location (85-90%) of the radical, with the remaining 10-15% delocalized onto Y(731) and Y(730) in α2. Pulsed electron-electron double-resonance spectroscopy on samples prepared by rapid freeze quench (RFQ) methods identified three distances: 30 ± 0.4 Å (88% ± 3%) and 33 ± 0.4 and 38 ± 0.5 Å (12% ± 3%) indicative of NO(2)Y(122)(•)-Y(356)(•), NO(2)Y(122)(•)-NO(2)Y(122)(•), and NO(2)Y(122)(•)-Y(731(730))(•), respectively. Radical distribution in α2 was supported by RFQ electron paramagnetic resonance (EPR) studies using Y(731)(3,5-F(2)Y) or Y(730)(3,5-F(2)Y)-α2, which revealed F(2)Y(•), studies using globally incorporated [β-(2)H(2)]Y-α2, and analysis using parameters obtained from 140 GHz EPR spectroscopy. The amount of Y(•) delocalized in α2 from these two studies varied from 6% to 15%. The studies together give the first insight into the relative redox potentials of the three transient Y(•) radicals in the PCET pathway and their conformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call