Abstract

We investigate the relaxational dynamics of the order parameter of chiral symmetry breaking, the sigma mean-field, with a heat bath consisting of quarks and antiquarks. A semiclassical stochastic Langevin equation of motion is obtained from the linear sigma model with constituent quarks. The equilibration of the system is studied for a first order phase transition and a critical point, where a different behavior is found. At the first order phase transition we observe the phase coexistence and at a critical point the phenomenon of critical slowing down with large relaxation times. We go beyond existing Langevin studies and include reheating of the heat bath by determining the energy dissipation during the relaxational process. The energy of the entire system is conserved. In a critical point scenario we again observe critical slowing down.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.