Abstract

The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys. Rev. E 82, 061504 (2010)] is applied to the description of the irreversible process of equilibration and aging of a glass-forming soft-sphere liquid that follows a sudden temperature quench, within the constraint that the local mean particle density remains uniform and constant. For these particular conditions, this theory describes the nonequilibrium evolution of the static structure factor S(k;t) and of the dynamic properties, such as the self-intermediate scattering function F(S)(k,τ;t), where τ is the correlation delay time and t is the evolution or waiting time after the quench. Specific predictions are presented for the deepest quench (to zero temperature). The predicted evolution of the α-relaxation time τ(α)(t) as a function of t allows us to define the equilibration time t(eq)(φ), as the time after which τ(α)(t) has attained its equilibrium value τ(α)(eq)(φ). It is predicted that both, t(eq)(φ) and τ(α)(eq)(φ), diverge as φ→φ((a)), where φ((a)) is the hard-sphere dynamic-arrest volume fraction φ((a))(≈0.582), thus suggesting that the measurement of equilibrium properties at and above φ((a)) is experimentally impossible. The theory also predicts that for fixed finite waiting times t, the plot of τ(α)(t;φ) as a function of φexhibits two regimes, corresponding to samples that have fully equilibrated within this waiting time (φ≤φ((c))(t)), and to samples for which equilibration is not yet complete (φ≥φ((c))(t)). The crossover volume fraction φ((c))(t) increases with t but saturates to the value φ((a)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.