Abstract

We examine properties of equidistant sets determined by nonempty disjoint compact subsets of a compact 2-dimensional Alexandrov space (of curvature bounded below). The work here generalizes many of the known results for equidistant sets determined by two distinct points on a compact Riemannian 2-manifold. Notably, we find that the equidistant set is always a finite simplicial 1-complex. These results are applied to answer an open question concerning the Hausdorff dimension of equidistant sets in the Euclidean plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.