Abstract
AbstractThis article is about the interplay between topological dynamics and differential geometry. One could ask how much information about the geometry is carried in the dynamics of the geodesic flow. It was proved in Paternain [Expansive geodesic flows on surfaces. Ergod. Th. & Dynam. Sys.13 (1993), 153–165] that an expansive geodesic flow on a surface implies that there exist no conjugate points. Instead of considering concepts that relate to chaotic behavior (such as expansiveness), we focus on notions for describing the stability of orbits in dynamical systems, specifically, equicontinuity and distality. In this paper we give a new sufficient and necessary condition for a compact Riemannian surface to have all geodesics closed; this is the idea of a P-manifold: (M,g) is a P-manifold if and only if the geodesic flow SM×ℝ→SM is equicontinuous. We also prove a weaker theorem for flows on manifolds of dimension three. Finally, we discuss some properties of equicontinuous geodesic flows on non-compact surfaces and on higher-dimensional manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.