Abstract

The twelve phosphide oxides RZnPO (R = Y, La-Nd, Sm, Gd-Tm) and the nine arsenide oxides (R = Y, La-Nd, Sm, Gd-Dy) have been prepared by reaction of the rare earth elements, ZnO, and phosphorus or arsenic, respectively, in a NaCl/KCl flux. The compounds RZnPO (R = Y, Pr, Nd, Sm, Gd-Tm) crystallize with a new trigonal rhombohedral structure type, determined from single-crystal X-ray diffractometer data of NdZnPO: R&thremacr;m, a = 397.7(1) pm, c = 3097.5(5) pm, Z = 6. The other eleven compounds are isotypic with ZrCuSiAs (P4/nmm, Z = 2). This tetragonal structure was refined from single-crystal X-ray data of LaZnPO (a = 404.0(1) pm, c = 890.8(2) pm) and NdZnAsO (a = 403.0(1) pm, c = 894.9(4) pm). In both structure types rare earth element-oxygen layers alternate with zinc-pnictogen layers. The rare earth element atoms have four oxygen and three (NdZnPO) or four (LaZnPO, NdZnAsO) pnictogen neighbors. The zinc atoms have tetrahedral pnictogen coordination. The arsenide oxides as well as the tetragonal phosphide oxides LaZnPO and CeZnPO are black, while the other (trigonal) phosphide oxides are transparent. The more metallic character of the tetragonal compounds is ascribed to their more delocalized chemical bonding, as is indicated by their higher coordination numbers, which in part also result through significant Zn-Zn bonding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.