Abstract
The estimation of evaporation from the sea surface is not yet achieved adequately by remote sensing techniques, in general. However, for approximate averaged estimates over moderate space and time scales over a specific tropical region, e.g., weekly values over the Indian Ocean as needed in monsoon moisture diagnosis, it may be possible to extrapolate satellite wind and humidity data to the ocean surface and then use bulk aerodynamic parameterization for estimating evaporation. In the present investigation, GOES low-level cloud winds and TIROS-N moisture profiles over the Indian Ocean are extrapolated to the ocean surface. The planetary boundary layer (PBL) wind shear is obtained over different sub-regions and periods during the monsoon season, by reference to objectively analysed fields. These shear values are applied to GOES satellite winds to obtain sea-surface winds. The humidity extrapolation was based on (i) an exponential fit for water vapour density and (ii) a vertical distribution of relative humidity approximately proportional to atmospheric pressure. The exchange coefficient is varied slightly depending on wind speed and boundary-layer stability inferred approximately from TIROS-N sea surface temperatures and temperature profiles. The evaporation estimate as based on these satellite parameters is assessed by comparison with ships' surface observations. Sensible heat exchange is also estimated and assessed. Some inferences based on these estimates are also presented, in relation to monsoon onset and activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.