Abstract
AbstractRadar and sounding rocket observations of plasma irregularities in the F‐region ionosphere acquired on 19 June 2019 during NASA experiment Too WINDY on Kwajalein Atoll are presented. The experiment was conducted near local midnight during a period of low solar flux and quiet geomagnetic conditions. Plasma density irregularities were seen by the rocket and also in the incoherent scatter radar data to emerge and persist mainly in the topside. Density irregularities in the bottomside remained very small by comparison throughout the observations. Zonal plasma drifts measured by the rocket were highly structured in the topside. Patches of coherent scatter entrained in the large‐scale topside density irregularities appeared to propagate slowly westward in a narrow flow channel detected by the rocket. Broadband ELF emissions were also detected in the topside. Some of the characteristics of the topside irregularities are typical of postsunset equatorial F‐region irregularities observed frequently by coherent scatter radars, and some of the common features in the coherent scatter database are reviewed. Two scenarios that have been proposed to account for postmidnight spread F are tested computationally. One involves unseasonably large background zonal electric fields, and the other involves forcing from below by neutral waves and turbulence. Neither scenario appears to be able to account for the Too WINDY observations and the preponderance of topside irregularities without bottomside precursors in particular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.