Abstract

We show with a recently devised extended first-principles molecular dynamics method that calculated Hugoniots of poly-$\ensuremath{\alpha}$-methylstyrene agree well with precision experimental results of Kritcher et al. [Nature (London) 584, 51 (2020)] and D\oppner et al. [Phys. Rev. Lett. 121, 025001 (2018)]. The deviation is smaller than 0.8%. This agreement does not sensitively rely on the approximations in the employed first-principles methods as long as underlying physics are well described, as illustrated in the calculation of equation of state for polystyrene covering the warm dense regime. These results may stimulate a broad range of quantitative investigations on warm dense matter that were not thought possible before, and may thus afford a new prospect to the field of inertial confinement fusion and high-energy-density physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.