Abstract

AbstractThe equations of state of dense hydrous magnesium silicates (DHMS), determined from high-pressure single-crystal X-ray diffraction are reviewed, including hydroxylchondrodite, hydroxylclinohumite, phase A, phase B (anhydrous and hydrous), superhydrous phase B and phase E. The phases along the forsterite–brucite join, Mg2SiO4–Mg(OH)2, display near (increasing) linearity in compressibility with respect to water content and increasing bulk moduli (KT) with density. Such trends allow prediction of the as yet unknown bulk moduli of phases such as OH-Mg norbergite. The addition of water also reduces the bulk modulus of the B-phases and the anisotropy observed in axial compression. The alternating layers of octahedra and octahedra + tetrahedra completely control compression of the B phases, with the stacking direction becoming more compressible with addition of water. The enigmatic Phase E has the highestKT'yet measured for a hydrous silicate and one of the lowestKT. In contrast with other DHMS, Phase E is only slightly anisotropic in axial compression and we attribute this to the role of the intralayer cations in the structure. The degree of hydration and the vacancy concentration appear to be coupled in Phase E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.