Abstract

A new form of the semiempirical equation of state for the liquid phase of helium-4 is proposed that is based on the assumption that the structure of this phase consists of a mixture of dielectric and metallic components. It is postulated that solid dielectric helium with density higher than 5.3 g/cm3 becomes a metal. The values of the parameters of the equations of state for both solid phases and the liquid phase of helium are calculated. The unknown values of the initial data for helium are taken by analogy with the parameters for deuterium. The phase diagram, shock adiabat, isentropes, isotherms, and electrical conductivity in these processes are calculated with the use of the equations of state of solid and liquid phases of helium-4. The results of calculation are compared with experimental data in the range of pressures of up to 35 GPa for an isotherm, up to 150 GPa for a shock adiabat, up to 42 GPa for the melting curve, and up to 2000 GPa for isentropes, and showed quite satisfactory agreement. Numerical extrapolation of the melting curve is performed to a range of ultrahigh pressures of up to 8000 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.