The ab initio calculation of molecular electron affinities (EA) and ionization potentials (IP) is a difficult task because the energy of interest is a very small fraction of the total electronic energy of the parent species. For example, EAs typically lie in the 0.01-10 eV range, but the total electronic energy of even a small molecule, radical, or ion is usually several orders of magnitude larger. Moreover, the EA or IP is an intensive quantity but the total energy is an extensive quantity, so the difficulty in evaluating EAs and IPs to within a fixed specified (e.g., ±0.1 eV) accuracy becomes more and more difficult as the system's size and number of electrons grows. The situation becomes especially problematic when studying extended systems such as solids, polymers, or surfaces for which the EA or IP is an infinitesimal fraction of the total energy. EOM methods such as the author developed in the 1970s offer a route to calculating the intensive EAs and IPs directly as eigenvalues of a set of working equations. A history of the development of EOM theories as applied to EAs and IPs, their numerous practical implementations, and their relations to Greens function or propagator theories are given in this contribution. EOM methods based upon Møller-Plesset, multiconfiguration self-consistent field, and coupled-cluster reference wave functions are included in the discussion as is the application of EOM methods to metastable states of anions.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call