Abstract

AbstractGross and Siebert developed a program for constructing in arbitrary dimension a mirror family to a log Calabi–Yau pair (X, D), consisting of a smooth projective variety X with a normal-crossing anti-canonical divisor D in X. In this paper, we provide an algorithm to practically compute explicit equations of the mirror family in the case when X is obtained as a blow-up of a toric variety along hypersurfaces in its toric boundary, and D is the strict transform of the toric boundary. The main ingredient is the heart of the canonical wall structure associated to such pairs (X, D), which is constructed purely combinatorially, following our previous work with Mark Gross. In the case when we blow up a single hypersurface we show that our results agree with previous results computed symplectically by Aroux–Abouzaid–Katzarkov. In the situation when the locus of blow-up is formed by more than a single hypersurface, due to infinitely many walls interacting, writing the equations becomes significantly more challenging. We provide the first examples of explicit equations for mirror families in such situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.