Abstract
The ambient calculus is a process calculus for describing mobile computation. We develop a theory of Morris-style contextual equivalence for proving properties of mobile ambients. We prove a context lemma that allows derivation of contextual equivalences by considering contexts of a particular limited form, rather than all arbitrary contexts. We give an activity lemma that characterizes the possible interactions between a process and a context. We prove several examples of contextual equivalence. The proofs depend on characterizing reductions in the ambient calculus in terms of a labelled transition system.KeywordsProcess VariableTransition SystemFormal LanguageLimited FormLabel Transition SystemThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.