Abstract

Exposure to chemicals from ingestion of contaminated soil may be an important pathway with potential health consequences for children. A key parameter used in assessing this exposure is the quantity of soil ingested, with estimates based on four short longitudinal mass-balance soil ingestion studies among children. The estimates use trace elements in the soil with low bioavailability that are minimally present in food. Soil ingestion corresponds to the excess trace element amounts excreted, after subtracting trace element amounts ingested from food and medications, expressed as an equivalent quantity of soil. The short duration of mass-balance studies, different concentrations of trace elements in food and soil, and potential for trace elements to be ingested from other nonsoil, nonfood sources contribute to variability and bias in the estimates. We develop a stochastic model for a soil ingestion estimator based on a trace element that accounts for critical features of the mass-balance equation. Using results from four mass-balance soil ingestion studies, we estimate the accuracy of soil ingestion estimators for different trace elements, and identify subjects where the difference between Al and Si estimates is larger (>3 RMSE) than expected. Such large differences occur in fewer than 12% of subjects in each of the four studies. We recommend the use of such criteria to flag and exclude subjects from soil ingestion analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.