Abstract

Recently Lee and Levesque have extended the Weeks-Chandler-Andersen pure fluid perturbation theory to mixtures and have compared the results to the Leonard-Henderson-Barker mixture theory. The results seem to favour the Leonard-Henderson-Barker theory. This and other previous comparisons of mixture theories have been mostly confined to the study of ‘zero pressure’ thermodynamic properties. In this paper we compare the Lee-Levesque, Leonard-Henderson-Barker and the van der Waals one-fluid theories to high pressure equation of state data for helium-xenon mixtures. This system is modelled by a binary mixture of Lennard-Jones fluids and the hard sphere reference system is characterized by the Grundke-Henderson hard sphere mixture radial distribution function. The Lee-Levesque theory compares favourably with experimental equation of state data up to pressures of 2000 atmospheres. The Leonard-Henderson-Barker and van der Waals one theories are satisfactory. Although the van der Waals one theory yields the poorest results, it does offer the advantage of having the greatest ease of computation. Previous theoretical and Monte Carlo calculations of mixture properties have assumed the geometric mean rule for the mixed interaction energy parameter, ε 12, with consequent disagreement with experimental results. We point out that ε 12 can be determined from mixed second virial coefficient data and use such improved determinations of ε 12. We show that this method yields significantly improved theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.