Abstract

The equation of state of symmetric nuclear matter with the inclusion of non-strange dibaryons is studied. We pay special attention to the existence of a dibaryon condensate at zero temperature. These calculations have been performed in an extended quark-meson coupling model with density-dependent parameters, which takes into account the finite size of nucleons and dibaryons. A first-order phase-transition to pure dibaryon matter has been found. The corresponding critical density is strongly dependent on the value of the dibaryon mass. The density behavior of the nucleon and dibaryon effective masses and confining volumes have been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.