Abstract
We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the $T$-integration method to nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-$N_t$ approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to $m_\pi/m_\rho \simeq 0.63$, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large $N_t$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.