Abstract

An equation of state has been developed for the representation of the phase behavior of high-temperature and supercritical aqueous systems containing salts and nonelectrolytes. The equation includes a reference part that is based on a model for hard-sphere ion pairs and dipolar solvent molecules. In addition to the reference part, the equation contains a perturbation part, which is expressed by a truncated virial-type expansion. To enhance the predictive capability of the EOS for normal fluids such as hydrocarbons, the equation has been reformulated using the three-parameter corresponding-states principle. For salt–water systems for which little experimental information is available, a predictive procedure has been developed that relies on similarities in the fluid phase behavior of various salt–water systems. This procedure utilizes the equation of state for NaCl+H 2O as a prototype system and introduces a transformation of parameters for the salt of interest. The equation accurately represents vapor–liquid equilibria, solid–liquid equilibria and densities for systems containing water, salts and hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.