Abstract

We provide an equation of state for high density supernova matter by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high density and high temperature nuclear matter containing leptons (electrons and neutrinos) under the chemical equilibrium condition. The conditions of charge neutrality and equilibrium under the β-decay process lead first to the evaluation of the lepton fractions and afterward to the evaluation of internal energy, pressure, entropy and, in total to the equation of state of hot nuclear matter for various isothermal cases. Thermal effects on the properties and equation of state of nuclear matter are evaluated and analyzed in the framework of the proposed effective interaction model. Since supernova matter is characterized by a constant entropy, we also present the thermodynamic properties for the isentropic case. Special attention is devoted to the study of the contribution of the components of β-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernovas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.