Abstract

A semi-empirical equation of state model for aluminum in a warm dense matter regime is constructed. The equation of state, which is subdivided into a cold term, thermal contributions of ions and electrons, covers a broad range of phase diagram from solid state to plasma state. The cold term and thermal contribution of ions are from the Bushman–Lomonosov model, in which several undetermined parameters are fitted based on equation of state theories and specific experimental data. The Thomas–Fermi–Kirzhnits model is employed to estimate the thermal contribution of electrons. Some practical modifications are introduced to the Thomas–Fermi–Kirzhnits model to improve the prediction of the equation of state model. Theoretical calculation of thermodynamic parameters, including phase diagram, curves of isothermal compression at ambient temperature, melting, and Hugoniot, are analyzed and compared with relevant experimental data and other theoretical evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.