Abstract

We characterize the equation of state (EoS) of the SU(N>2) Fermi-Hubbard Model (FHM) in a two-dimensional single-layer square optical lattice. We probe the density and the site occupation probabilities as functions of interaction strength and temperature for N=3, 4, and 6. Our measurements are used as a benchmark for state-of-the-art numerical methods including determinantal quantum MonteCarlo and numerical linked cluster expansion. By probing the density fluctuations, we compare temperatures determined in a model-independent way by fitting measurements to numerically calculated EoS results, making this a particularly interesting new step in the exploration and characterization of the SU(N) FHM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.