Abstract

Change in the crystal structure of the BiFeO3 multiferroic at high pressures up to 70 GPa in a diamond anvil cell has been studied by the method of synchrotron x-ray diffraction at room temperature. The experiment has been carried out under hydrostatic conditions with helium as a pressure-transferring medium. An anomaly has been observed in the behavior of the structural parameters at pressures Pc ≈ 40−50 GPa. This anomaly correlates with the effect of the magnetic collapse of iron moments revealed in this pressure range. It has been found that the bulk compression modulus is equal to B0 = (75.5 ± 15.5) GPa in the interval 0 Pc. When the pressure decreases, the behavior of the structural parameters is completely reversible in correlation with the reversibility of the magnetic transition. The “diffuseness” of the structural transition in pressure is explained by thermal fluctuations between the high-and low-spin states of Fe3+ ions in the transition region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.