Abstract

The wide-ranging equation of state is a nonideal equation of state based on empirical fitting forms argued from thermodynamic considerations that yield the proper physical features of detonation. The complete equation of state forms are presented and the equation of state and a reaction rate are calibrated for the condensed-phase explosive PBX-9502. Experimental overdriven Hugoniot data are used to calibrate the products equation of state off the principal isentrope passing through the Chapman-Jouguet state. Shock Hugoniot data are used to calibrate the reactants equation of state. The normal detonation shock speed-shock curvature data (Dn−κ) from rate-stick measurements and shock initiation data from wedge tests are used to calibrate the reaction rate. Simulations are carried out that predict detailed particle velocity transients that are measured experimentally with embedded electromagnetic gauge measurements from gas-gun experiments. Multidimensional simulations of steady detonation in a right circular cylinder rate stick are carried out and compared with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.