Abstract
By solving the Bogoliubov--de Gennes equations at zero temperature, we study the effects of a one-dimensional optical lattice on the behavior of a superfluid Fermi gas at unitarity. We show that, due to the lattice, at low densities the gas becomes highly compressible and the effective mass is large, with a consequent significant reduction of the sound velocity. We discuss the role played by the lattice in the formation of molecules and the emergence of two-dimensional effects in the equation of state. Predictions for the density profiles and for the frequency of the collective oscillations in the presence of harmonic trapping are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.