Abstract

Heat conduction in solids is due to the motion of the phonon gas. A more general description of the heat transport in solids includes consideration of the mass, pressure, and inertial force of the phonon gas. The mass of the phonon gas refers to the equivalent mass of its energy based on Einstein’s mass-energy relation. The thermal vibration of the lattice creates the phonon gas pressure and the momentum change of the phonon gas results in an inertial force. The phonon gas velocity is directly proportional to the heat flux. These concepts are used to establish an equation of motion for the phonon gas including the driving, inertial, and resistant forces using Newtonian dynamics. This equation reduces to Fourier’s law of heat conduction when the inertial force can be neglected relative to the other terms so that heat conduction becomes pure diffusion. However, Fourier’s law of heat conduction no longer holds if the heat flux is very high, such that the inertial force of the phonon gas is not negligible. In such cases, the heat conduction behavior deviates from Fourier’s law even for steady-state conditions so that the heat conduction is characterized by a nonlinear relationship between the heat flux and the temperature gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.