Abstract

We develop a general approach for monitoring and controlling evolution of open quantum systems. In contrast to the master equations describing time evolution of density operators, here, we formulate a dynamical equation for the evolution of the process matrix acting on a system. This equation is applicable to non-Markovian and/or strong-coupling regimes. We propose two distinct applications for this dynamical equation. We first demonstrate identification of quantum Hamiltonians generating dynamics of closed or open systems via performing process tomography. In particular, we argue how one can efficiently estimate certain classes of sparse Hamiltonians by performing partial tomography schemes. In addition, we introduce an optimal control theoretic setting for manipulating quantum dynamics of Hamiltonian systems, specifically for the task of decoherence suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.