Abstract
A systematic treatment is given of the equation of motion of the classical anisotropic Heisenberg spin chain, both in the discrete case and in the continuum limit in which the spins S m ( t) associated with the lattice sites m are replaced by a spin density S( x, t), which is a function of the time t and the position x on the chain. In the case of axial symmetry the equation of motion for the spins is shown to be equivalent to a new equation in terms of one real variable, i.e. q m ( t) in the discrete case q( x, t) in the continuum limit. (From the treatment by A.E. Borovik it follows that the new equation of motion for q( x, t) is completely integrible in the special case of quadratic anisotropy.) Explicit expressions are given for the Lagrangians, both in the ferromagnetic and in the antiferromagnetic case. The relation with the nonlinear Schrödinger equation on the one hand and the sine-Gordon equation on the other hand is discussed in some detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.