Abstract

AbstractLinearized viscous compressible Navier–Stokes equations are solved for the transient force on a spherical particle undergoing unsteady motion in an inhomogeneous unsteady ambient flow. The problem is formulated in a reference frame attached to the particle and the force contributions from the undisturbed ambient flow and the perturbation flow are separated. Using a density-weighted velocity transformation and reciprocal relation, the total force is first obtained in the Laplace domain and then transformed to the time domain. The total force is separated into the quasi-steady, inviscid unsteady, and viscous unsteady contributions. The above rigorously derived particle equation of motion can be considered as the compressible extension of the Maxey–Riley–Gatignol equation of motion and it incorporates interesting physics that arises from the combined effects of inhomogeneity and compressibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.