Abstract

We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction (RXRD) in a diamond anvil cell (DAC). It is found that all diffraction peaks of molybdenum undergo a split at around 27 GPa, and we believe that a phase transition from a body-centered cubic structure to a rhombohedral structure at room pressure has occurred. The slope of pressure–volume curve shows continuity before and after this phase transition, when fitting the pressure–volume curves of the body-centered cubic structure at low pressure and the rhombohedral structure at high pressure. A bulk modulus of 261.3 (2.7) GPa and a first-order derivative of the bulk modulus of 4.15 (0.14) are obtained by using the nonhydrostatic compression data at the angle ψ = 54.7° between the diffracting plane normal and stress axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call