Abstract
We introduce a new class of algebras called EQ-algebras. An EQ-algebra has three basic binary operations (meet, multiplication and a fuzzy equality) and a top element. These algebras are intended to become algebras of truth values for a higher-order fuzzy logic (a fuzzy type theory, FTT). The motivation stems from the fact that until now, the truth values in FTT were assumed to form either an IMTL-, BL-, or MV-algebra, all of them being special kinds of residuated lattices in which the basic operations are the monoidal operation (multiplication) and its residuum. The latter is a natural interpretation of implication in fuzzy logic; the equivalence is then interpreted by the biresiduum, a derived operation. The basic connective in FTT, however, is a fuzzy equality and, therefore, it is not natural to interpret it by a derived operation. This defect is expected to be removed by the class of EQ-algebras introduced and studied in this paper. From the algebraic point of view, the class of EQ-algebras generalizes, in a certain sense, the class of residuated lattices and so, they may become an interesting class of algebraic structures as such.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.