Abstract

The epithelial to mesenchymal transition (EMT), a hallmark of chronic kidney disease, is a key event in the conversion from tubular epithelial cells to myofibroblasts in renal fibrosis. Epstein-Barr virus (EBV) is a γ-herpes oncovirus associated with chronic kidney disease. However, the relationship between EBV and the EMT process in renal tubular epithelial cells is not well understood. Among EBV-latent genes, EBV-encoded latent membrane protein 1 (LMP1) induces EMT by regulating a variety of molecules in EBV-induced oncogenic transformation. In this study, we investigated EBV-encoded LMP1 and EMT process markers in human proximal tubule epithelial cell line HK-2. LMP1 overexpression induces cell morphological changes via the epithelial to mesenchymal process in HK-2 cells, and these changes accelerate cell proliferation, cell motility, and invasion. Furthermore, VSIG4 upregulation by EBV-LMP1 induced LMP1-mediated EMT, cell motility, and invasion. VSIG4 upregulation by LMP1 was regulated at the transcriptional level via the NF-kB signaling axis. These results suggest that EBV-encoded LMP1 regulates EMT through the NF-kB-VSIG4 axis in HK-2 cells, and VSIG4 is a potential target in EBV-induced chronic kidney diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call