Abstract
The Burkitt's lymphoma (BL) cell line Akata retains the latency I program of Epstein-Barr virus (EBV) gene expression and cross-linking of its surface immunoglobulin G (IgG) by antibodies results in activation of viral replication. When EBV nuclear antigen 2 (EBNA2) was artificially expressed by a constitutive expression vector, the Cp EBNA promoter remained inactive and accordingly the latency III program was not induced. In contrast, expression of LMP2A and activity of the Fp lytic promoter were activated. Consistent with this Fp activity, the rate of spontaneous activation of the EBV replicative cycle was increased significantly, suggesting the possibility that EBNA2 can induce EBV replication. The efficiency of anti-IgG-induced activation of the viral replication was reduced in Akata cells expressing EBNA2. To obtain more direct evidence for EBNA2-induced activation of the EBV replicative cycle, this protein was next expressed by a tetracycline-regulated expression system. EBNA2 was undetectable with low doses (<0.5 microgram/ml) of tetracycline, while its expression was rapidly induced after removal of the antibiotic. This induced expression of EBNA2 was immediately followed by expression of EBV replicative cycle proteins in up to 50% of the cells, as shown by indirect immunofluorescence and immunoblot analysis. These results suggest an unexpected potential of EBNA2 to disrupt EBV latency and to activate viral replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.