Abstract

BackgroundProlonged immunosuppression or delayed T-cell recovery may favor Epstein-Barr virus (EBV) infection or reactivation after allogeneic hematopoietic stem cell transplantation (HSCT), which can lead to post-transplant lymphoproliferative disease (PTLD) and high-grade malignant B-cell lymphoma. Cytokine-induced killer (CIK) cells with dual specific anti-tumor and virus-specific cellular immunity may be applied in this context. MethodsCIK cells with EBV-specificity were generated from peripheral blood mononuclear cells (PBMCs), expanded in the presence of interferon-γ, anti-CD3, interleukin (IL)-2 and IL-15 and were pulsed twice with EBV consensus peptide pool. CIK cells with EBV-specificity and conventional CIK cells were phenotypically and functionally analyzed. Additionally, CIK cells with EBV-specificity were applied to a patient with EBV-related PTLD rapidly progressing to highly aggressive B-cell lymphoma on a compassionate use basis after approval and agreement by the regulatory authorities. ResultsPre-clinical analysis showed that generation of CIK cells with EBV-specificity was feasible. In vitro cytotoxicity analyses showed increased lysis of EBV-positive target cells, enhanced proliferative capacity and increased secretion of cytolytic and proinflammatory cytokines in the presence of EBV peptide-displaying target cells. In addition, 1 week after infusion of CIK cells with EBV-specificity, the patient's highly aggressive B-cell lymphoma persistently disappeared. CIK cells with EBV-specificity remained detectable for up to 32 days after infusion and infusion did not result in acute toxicity. DiscussionThe transfer of both anti-cancer potential and T-cell memory against EBV infection provided by EBV peptide-induced CIK cells might be considered a therapy for EBV-related PTLD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call