Abstract

We have previously elucidated that Epstein-Barr-virus-encoded latent membrane protein 1 (LMP1) can increase the serine phosphorylation level of annexin A2 by activating the protein kinase C (PKC) signaling pathway and that LMP1 induces the nuclear entry of annexin A2 in an energy- and temperature-dependent manner. Here, we further confirm that LMP1 increases the serine phosphorylation level of annexin A2 by activating the phosphoinositide-specific phospholipase C (PI-PLC)-PKC alpha/PKC beta pathway, mainly through the activation of the PKCbeta pathway. Additionally, active recombinant PKC alpha, PKC beta I, and PKC beta II kinases are able to phosphorylate annexin A2 in vitro. Annexin A2 in the nucleus plays an important role in DNA synthesis and cell proliferation. By site-specific substitution of glutamic acid in the place of serine 11 and 25 in the N-terminus, we show that serine 25 phosphorylation of annexin A2 was associated with the nuclear entry of annexin A2, DNA synthesis and cell proliferation, whereas serine 11 has no obvious influence. We demonstrate for the first time that the PI-PLC-PKCalpha/PKCbeta pathway plays an important role in serine phosphorylation and in the nuclear entry of annexin A2 mediated by LMP1. In addition, we show that annexin A2 is the substrate protein of PKC alpha, PKC betaI, and PKC betaII kinases. Serine 25 phosphorylation of annexin A2 is shown to be associated with its nuclear entry, DNA synthesis, and cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.