Abstract
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.
Highlights
Epstein Barr virus (EBV) is a ubiquitous human herpesvirus that exhibits a distinct tropism for both B cells and epithelial cells
Epstein-Barr virus (EBV) is an important human pathogen that is carried as a latent infection of B cells by most adults worldwide
We have identified an efficient process of ‘transfer infection’. This process involves EBV first binding to B cells, resulting in CD21-mediated capping of virus and activation of adhesion molecules, which facilitates conjugate formation between B cells and epithelial cells and the subsequent entry of EBV into epithelial cells
Summary
Epstein Barr virus (EBV) is a ubiquitous human herpesvirus that exhibits a distinct tropism for both B cells and epithelial cells. Whilst the process of B cell infection by EBV is well characterised, the natural mechanisms of epithelial cell infection are poorly understood. Infection of B cells by EBV is very efficient. It is initiated by the interaction of the major viral envelope glycoprotein, gp350, with the complement receptor, CD21 ( known as CR2), on the B cell surface [2,3]. Fusion and internalisation of the virus is triggered by the interaction of a second envelope glycoprotein, gp, with HLA class II [4], and is thereafter mediated by the core fusion complex, gH/gL/gp42 [5,6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.