Abstract

The DNase of Epstein–Barr virus (EBV) is a 470-amino-acid protein which possesses both endonuclease and exonuclease activities and accepts both double-stranded DNA and single-stranded DNA as substrates. It has been reported that this protein may be found in the nucleus and/or cytoplasm of infected cells. In this study, using cell fractionation and immunoblotting to determine the distribution of EBV DNase in Akata cells stimulated with anti-human immunoglobulin G antibody (anti-IgG), the DNase was found to be located predominantly in the nucleus. To map the signals in DNase which mediate its nuclear localization, we monitored the nuclear transport of fusion proteins consisting of various fragments of EBV DNase linked to a cytoplasmic protein, β-galactosidase (β-Gal). The results demonstrated that two regions of the DNase with nuclear localization signal (NLS) activity, designated NLS-A (amino acids 239–266) and NLS-B (amino acids 291–306), were able independently to localize the β-Gal to the nuclei of HEp-2 and HeLa cells. Five basic residues (R or K) were found in each NLS and distributed differently in primary structure. The basic domains and flanking residues of NLS-A and NLS-B are250YKRPCKRSFIRFI262and294LKDVRKRKLGPGH306, respectively. Further examination of these sequences revealed that NLS-A contains bulky aromatic amino acids (Y and F) which may diminish its capacity to act as a strong NLS and lacks the typical proline and glycine helix-breakers. However, NLS-B contains typical proline and glycine helix-breakers and the histidine residue at amino acid 306 is required for NLS activity. In addition, two hydrophobic regions within the DNase were found to inhibit the function of NLS-A but not NLS-B, suggesting that these two domains are different types of NLSs and differ in their sensitivity to hydrophobic regions in the context of protein structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.