Abstract

AbstractResearch was conducted to determine whether resistance to glyphosate among Palmer amaranth (Amaranthus palmeriS. Watson) populations within the U.S. state of Arkansas was due solely to increasedEPSPSgene copy number and whether gene copy number is correlated with resistance level to glyphosate. One hundred and fifteenA. palmeriaccessions were treated with 840 g ae ha−1glyphosate. Twenty of these accessions, selected to represent a broad range of responses to glyphosate, underwent further testing. Seven of the accessions were controlled with this dose; the rest were resistant. The effective dose to cause 50% injury (ED50) for susceptible accessions ranged from 28 to 207 g ha−1. The glyphosate-resistant (GR) accessions had ED50values ranging from 494 to 1,355 g ha−1, a 3- to 48-fold resistance level compared with the susceptible standard (SS). The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene relative copy number was determined for 20 accessions, 4 plants accession−1. Resistant plants from five GR accessions (38% of resistant plants tested) did not have increasedEPSPSgene copies. Resistant plants from the remaining eight GR accessions (62% of resistant plants tested) had 19 to 224 moreEPSPSgene copies than the SS. Among the accessions tested, injury declined 4% with every additionalEPSPScopy. ED50values were directly correlated withEPSPScopy number. The highly resistant accession MIS11-B had an ED50of 1,355 g ha−1and 150 gene copies. Partial sequences ofEPSPSfrom GR accessions withoutEPSPSamplification did not contain any of the known resistance-conferring mutations. Nearly 40% of GR accessions putatively harbor non–target site resistance mechanisms. Therefore, elevatedEPSPSgene copy number is associated with glyphosate resistance amongA. palmerifrom Arkansas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call